The evolution of early vertebrate photoreceptors.
نویسندگان
چکیده
Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.
منابع مشابه
Evolution of vertebrate retinal photoreception
Recent findings shed light on the steps underlying the evolution of vertebrate photoreceptors and retina. Vertebrate ciliary photoreceptors are not as wholly distinct from invertebrate rhabdomeric photoreceptors as is sometimes thought. Recent information on the phylogenies of ciliary and rhabdomeric opsins has helped in constructing the likely routes followed during evolution. Clues to the fac...
متن کاملA Cambrian origin for vertebrate rods
Vertebrates acquired dim-light vision when an ancestral cone evolved into the rod photoreceptor at an unknown stage preceding the last common ancestor of extant jawed vertebrates (~420 million years ago Ma). The jawless lampreys provide a unique opportunity to constrain the timing of this advance, as their line diverged ~505 Ma and later displayed high-morphological stability. We recorded with ...
متن کاملPhotoreceptor Evolution: Ancient ‘Cones’ Turn Out to Be Rods
Vertebrate rod photoreceptors are thought to have evolved from cone photoreceptors only after the divergence of the jawed and jawless fishes, but this idea is questioned by new evidence that the short 'cones' of jawless sea lampreys are physiologically equivalent to rods.
متن کاملCiliary photoreceptors with a vertebrate-type opsin in an invertebrate brain.
For vision, insect and vertebrate eyes use rhabdomeric and ciliary photoreceptor cells, respectively. These cells show distinct architecture and transduce the light signal by different phototransductory cascades. In the marine rag-worm Platynereis, we find both cell types: rhabdomeric photoreceptor cells in the eyes and ciliary photoreceptor cells in the brain. The latter use a photopigment clo...
متن کاملThe origins of colour vision in vertebrates.
The capacity for colour vision is mediated by the comparison of the signal intensities from photoreceptors of two or more types that differ in spectral sensitivity. Morphological, physiological and molecular analyses of the retina in an agnathan (jawless) fish, the lamprey Geotria australis, may hold important clues to the origins of colour vision in vertebrates. Lampreys are extant representat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 364 1531 شماره
صفحات -
تاریخ انتشار 2009